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Abstract. Stochastic operation of power systems has risen attention of researchers as fluctuating energy 

sources like renewables are being increasingly integrated into existing grids. Uncertainties can be higher in 

small power systems like isolated microgrids, where both renewables and load can be extremely 

unpredictable, thus causing increasing operating costs and business risks. In the last years, many approaches 

have been proposed to account for uncertainties in off-grid microgrids, usually simulating several size, load 

and renewables scenarios. Among them, a simplified stochastic approach, namely Aggregating-Rule-based 

Stochastic Optimization (ARSO), which decomposes the N-scenario problem into N deterministic sub-

problems whose solutions are finally processed and aggregated, has been recently proposed with interesting 

results in terms of optimality of results and computational requirements. In this paper, two ARSO 

approaches are compared with standard stochastic and deterministic methodologies used to operate isolated 

microgrids, to assess advantages and drawbacks of all these techniques and their ability in handling 

uncertainties. The two ARSO methodologies differ in the aggregating rule: to take into account the load and 

RES forecasting errors, the Improved-ARSO employs a Monte Carlo procedure, whereas the Mixed ARSO 

technique makes use of statistical rules. A numerical case study for a typical isolated microgrid in Africa is 

proposed and discussed. 
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1 Introduction 

Isolated microgrids are well known to be an efficient 

solution to supply electricity by exploiting local sources, 

without the burden of installing long and expensive 

power lines. The use of these systems is very common 

in islands, but, in the last years, has been increasingly 

used also in rural areas of developing countries, to 

support rural electrification [1].  

Representing the backbone of over 97% of the 

installed off-grid systems [1], diesel generators have 

been widely used as a very cheap, easy to operate and 

fast installation technology; however, their operating 

costs in remote areas are very high, and fluctuate with 

the fuel price. Nowadays, hybrid systems that couple 

multiple sources and energy storage devices are 

becoming the standard, with added advantage of coping 

with environmental concerns [2]. Even if the recent 

decreasing in the installation cost (CAPEX) makes 

renewable sources cheap solutions on a long-term basis, 

they are subject to seasonality and fluctuations of the 
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power source, thus affecting the operating costs of the 

fuel-fired backup generators, as well as the reliability 

and the quality of service. For these reasons, renewables 

and load uncertainties must be addressed in both the 

design and the operational phase to hedge business risks. 

Traditional hybrid microgrids are usually operated 

under priority-list rules [3] that dispatch first the 

renewable sources, then the electrical storages and 

finally the fuel-fired generators, expected to be used as 

a simple backup source. Based on "if-then" rules, 

approaches like Load Following and Cycle Charging are 

very simple, robust, and extremely easy to be 

implemented in the majority of control devices. 

Recently, predictive approaches based on the 

periodic forecasting of renewables and load have shown 

promising results, with operational savings around 6-

10% with respect to priority-list strategies, thus 

captivating the attention of many private companies [4], 

[5]. Based on the expected power profiles of demand 

and renewable energy production of the following 

hours, these approaches deterministically calculate the 
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dispatch of the system that minimizes the operating 

costs of service, usually including the expenses for the 

fuel, the maintenance and the unserved load (a 

measurement of service quality). These predictive 

approaches, hereinafter referred to as Deterministic 

Optimization (DO), rely on optimization techniques that 

are more complex than priority-list methods and require 

good forecasts, although savings have revealed 

consistent. State-of-art formulations are based on 

Mixed-Integer Linear Programming (MILP), which has 

proven to be robust and guarantee reaching the global 

optimum [6]. Furthermore, MILP computational 

requirements are usually consistent with rolling-horizon 

approaches, which can also be implemented in 

commercial devices [4], [5]. Nevertheless, in their basic 

deterministic formulation (i.e. one single forecasted 

power profile), none of these techniques consider 

uncertainties in the optimization phase. Unavoidable 

forecasting errors thus lead to possible sub-optimal 

solutions in real operation. 

Stochastic techniques have proven to be promising 

as they can reduce the operating system costs and the 

amount of unserved energy with respect to traditional 

priority rules [6]–[8]. Uncertainties are usually 

modelled by several possible scenarios of load and 

renewable energy production, which together 

approximate the probability density function of the 

RES/load forecasting errors. The generated profiles are 

then used by an optimization algorithm aimed to identify 

the best dispatching of resources, which in standard 

Stochastic Optimization (SO) minimizes the expected 

operating costs by a weighted-average of the cost of 

each scenario, obtaining each weight from each scenario 

probability according to the Sample Average 

Approximation (SAA) method [9]. Several studies 

confirmed the profitability of SO for both large and 

small power systems [6], [10], [11]. Authors in [6] 

highlighted that SO performed better among several 

techniques for a large power system with high 

penetration of renewable production, while in [10], [11], 

SO was discussed for isolated systems, turning out to be 

up to 35% cheaper than the DO solution.  

However, the computational requirements of 

conventional SO procedures are consistently higher than 

DO. In fact, the computational time increases more than 

linearly with the number of scenarios, especially when 

several binary variables are involved; therefore, a trade-

off between optimality of results and time is required 

[12]. For this reason, several decomposition techniques 

are usually adopted to simplify stochastic approaches, 

like Benders or Danzig-Wolfe decompositions, often 

based on scenarios [13]. On the other hand, scenario 

reduction methods are used to reduce the number of 

scenarios to consider, while preserving the stochastic 

characteristics of the distribution, thus reducing 

computational time [14]. 

To overcome complexity and computational 

requirements of standard SO procedures, other 

approaches, for the first time referred to as Aggregating-

Rule-based Stochastic Optimization (ARSO) in [15], 

decompose the N-scenarios problem into N 

deterministic sub-problems and then aggregate the 

results based on different methodologies [15]–[18]. 

While the deterministic optimization of each 

subproblem is similar, the difference between the 

different ARSO approaches is mainly related to the 

aggregation criterion, which can be statistical-based 

[16], weighted-average [18], cost-based [15], or mixed 

[17]. Authors in [16] agglomerate the solution from the 

first stage to identify the probabilistic dispatching of the 

system by aggregating the results. A mixed ARSO 

methodology was proposed in [17] for a reconfigurable 

microgrid: the grid topology was set with a statistical 

approach, while the generator scheduling with a 

weighted-average approach. Instead, the method 

proposed in [15] collects the optimal scheduling of the 

deterministic sub-problems and simulates the 

corresponding real-time system operation of each of 

them to evaluate the expected operating costs, given the 

probability density function of the forecasting errors. 

This methodology has performed very well with respect 

to traditional Stochastic Optimization (SO), but limited 

comparisons to ARSO approaches have been developed. 

The methodology suggested in [15] has shown 

promising results, but further studies are needed to 

highlight benefits. Therefore, in this paper we propose a 

comparison between mixed and cost-based ARSO 

methodologies and typical SO and DO approaches. A 

numerical case study related to an off-grid system in 

Uganda is shown and discussed. Additionally, a 

sensitivity analysis regarding the initial state of the 

system is carried out, to evaluate how the various 

approaches perform under different starting conditions.  

2 The system 

2.1 Topology 

Being strongly affected by the forecasting errors of 

the load and renewable sources, the mini-grid under 

consideration is a typical off-grid system installed in 

developing countries, composed by a photovoltaic plant, 

an inverter, a battery storage, a battery converter and a 

diesel generator, used as a backup source. The typical 

AC configuration where all sources are coupled at the 

AC busbar has been chosen, as it is modular and suitable 

for rural applications [19]. The photovoltaic system and 

batteries are coupled at the AC busbar by means of 

converters, while the fuel-fired generator is directly tied. 

2.2 The operating strategy 

The system is operated using the following strategy: 

the day-ahead scheduling of the dispatchable resources 

(fuel-fired generators and storages) is firstly optimized 

for the following 24 hours, then during real-time, the 

operation is adjusted to cope with unavoidable 

forecasting errors. Priority-list rules are used for real-

time balancing: first renewable sources are dispatched 

to correct deviations with respect to the expected 

operation, then storage, and finally the fuel-fired 

generators, similarly to [15], [20]. 

It is worth noticing that other papers have proposed 

DO methodologies for the optimal scheduling of these 

systems [20]; however, few studies compared the use of 
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different operating strategies in the scheduling level. 

Here, we propose a comparison in the day-ahead 

dispatching algorithm; in particular, the typical DO 

method is compared to SO and to two different ARSO 

strategies. The case study was developed to be 

comparable to results reported in [15]. As SO and DO 

techniques are well known, in the following we focus on 

the description of ARSO methodologies, while the 

mathematical problem of DO and SO is based on [15].  

3 The optimization strategy  

3.1 Description 

This section details the optimization procedures used 

in the proposed paper. The structure of the conventional 

SO and ARSO problems are shown in Fig. 1 and Fig. 2, 

respectively. The typical SO formulation calculates the 

scheduling that minimizes the expected operating 

system costs, evaluated with SAA method [9], using a 

number of scenarios that capture forecasting 

uncertainties. In this formulation, the optimization is 

performed using all scenarios together, hence the 

computational costs sharply increase with the number of 

scenarios. Conversely, in ARSO methodologies, each 

scenario is optimized independently (first stage) and 

later an aggregation algorithm (second stage) identifies 

the final dispatch according to a rule that is usually 

statistical, weighted-average, cost-based or mixed. In all 

formulations, the expenses for the fuel, the generator's 

maintenance, the load shedding and the battery overuse 

are considered. This last term takes into account that 

overusing the battery in a time-horizon wears the reserve 

for the following hours, which would increase the costs 

in the following time-step. To prevent this, the battery-

overuse term is non-zero only when the energy stored in 

the battery at the end of the optimization period falls 

below a fixed level, set to the initial storage level. 

 

Fig. 1. Stochastic Optimization. 

 

Fig. 2. Aggregating-Rule-based Stochastic Optimization 

(ARSO). 

In this paper, a statistical (M-ARSO) and a novel 

cost-based (I-ARSO) ARSO methodologies are 

described and applied, as well as both the standard SO 

and DO approaches. 

3.2 Mixed-rule ARSO (M-ARSO) 

Typical ARSO approaches identify the optimal 

dispatching by analyzing the scheduling achieved by the 

deterministic optimizations carried out in the first stage; 

the final dispatching is selected according to statistical 

rules (i.e. the most recurring scheduling) or weighted-

average approaches. In particular, on/off decisions like 

the status of generators ("Unit Commitment") are often 

selected by using statistical approaches, while the power 

level requested to storage and committed generating 

units ("power dispatching") is usually selected using a 

weighted-average approach [15]. 

 

In this paper, we consider a mixed-rule aggregator 

based on the following algorithm: 

1. The optimal dispatching corresponding to each one 

of the N RES/load scenarios is found using a 

deterministic optimization routine, later described. 

2. The most recurring unit commitment among the 

results of N scenarios is identified and the start-up 

and shut-down of fuel-fired generators is 

scheduled accordingly. 

3. The average value of power profiles corresponding 

to the selected unit commitment is calculated and 

assigned to generators and storage devices.  

3.3 Improved ARSO (I-ARSO) 

Firstly proposed in [15], the Improved ARSO (I-

ARSO) model developed by the authors is the two-stage 

methodology depicted in Fig. 3 In the first stage, each 

one of the N RES/load scenarios is optimized 

independently using the DO algorithm. In the second 

stage, each one of the N optimal dispatching strategies 

assessed in the first stage is simulated for M Monte 

Carlo scenarios allowing to obtain the average expected 

real-time costs of each possible dispatching strategy of 

the first stage. The aggregator selects the dispatching 

strategy with the lowest expected operating cost, 

averaged on the M corresponding Monte Carlo 
 

 

Fig. 3.The novel I-ARSO technique. 
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simulations [15]. It is worth noticing that the parameters 

of this algorithm are N and M, i.e. the number of 

scenarios to be used in the first and second stage of the 

method, respectively. 

3.4 Standard Stochastic Optimization (SO)  

The two-stage SO approach developed in this 

activity identifies the scheduling of the resources of the 

microgrid that minimizes the expected operating costs 

of the system; the uncertainties are modelled by means 

of scenarios using the SAA algorithm [9]. While the 

first-stage variables are the commitment and dispatching 

of the generator, the second-stage variables model the 

fast rules based on priority-list rules, used to keep the 

system stable. The model described in [15] was taken as 

reference and implemented in this activity. 

3.5 Standard Deterministic Optimization (DO) 

The standard DO formulation aims at scheduling 

generators and storages to minimize the operating costs 

of the system, considering a single forecast of the 

demand and the renewable energy production. The 

corresponding mathematical formulation is similar to 

the one of SO, but for a single scenario. This formulation 

is also used to optimize the first-stage scenarios of M-

ARSO and I-ARSO methodologies; the mathematical 

details of the approach can be found in [15]. 

4 Case Study 

4.1 Description 

The proposed case study is developed for a possible 

mini-grid serving 100 households in Soroti, Uganda; in 

particular, we investigated the day-ahead dispatching of 

a typical day during the rainy season, which is the most 

critical period because the renewable production 

decreases. The load profile and the renewable energy 

production were estimated using the same methodology 

described in [15], so that the results can be comparable. 

The system under consideration is composed by a 140-

kWp PV system, a 250-kWh lithium battery, a 70-kW 

inverter and a 30-kW fuel-fired generator [15]. 

4.2 Sensitivity analysis and comparison 
methodology 

In this study, we want to evaluate the effects of different 

predictive approaches to be used in the day-ahead 

scheduling phase (I-ARSO, M-ARSO, SO and DO) into 

the operating cost of a typical day of the rainy season, as 

described in Section 2.2. Due to its importance, we 

include a sensitivity analysis with respect to the initial 

storage level. 

In order to compare the different approaches on a 

common ground, first each approach is applied to 

calculate the corresponding optimal dispatching, then 

the real-time system operation of that scheduling is 

simulated for a large number of scenarios (100000), to 

evaluate the expected equivalent costs, similarly to [21]. 

4.3 Other parameters 

The number of scenarios of the first- and second-

stage of I-ARSO approaches was set to N=250 and 

M=1000, respectively. Instead, for the SO approach, in 

order to reduce the computational requirements without 

affecting the stochastic properties of simulations, a 

scenario reduction technique was used to reduce a large 

number of Monte Carlo scenarios (1000) to a lower 

number (6) by using a k-means algorithm, as in [15]. 

The fuel price was set to 1$/l and the economic value 

of the energy not served was assumed equal to 2$/kWh. 

The maintenance fee of the generator is 0.6$/kWh and 

the efficiency of batteries is 88% (round-trip). Finally, 

the equivalent cost of discharging the battery more than 

the initial level was assumed equal to 0.33$/h, which is 

equivalent to the specific generator consumption at the 

rated power including maintenance. 

5 Results 

The results of the day-ahead system scheduling for 

the proposed case study are shown in Tab. 3 and Fig. 4, 

including the sensitivity analysis with respect to the 

initial battery level (20%, 40% and 60%) and using 

different operating strategies (I-ARSO, M-ARSO, DO 

and SO). Fig. 4 reports the outcomes of the two ARSO 

methodologies, to highlight the effects of both M-ARSO 

and I-ARSO on the unit commitment of the fuel-fired 

generator. In particular, Fig. 4a, Fig. 4b and Fig. 4c 

report all the different commitment sequences resulted 

by the N first-stage sub-problems: white and black dots 

highlight hours when the generator is on or off, 

respectively. It is worth noticing that the number K of 

different commitment sequences is lower than N (250), 

because the same unit commitment sequence can be 

identified as optimal in more than one load/RES first-

stage scenario. The occurrence probability of each 

configuration, as used in the M-ARSO procedure, is 

depicted in Fig. 4d, Fig. 4e and Fig. 4f. In the second 

stage of the I-ARSO technique, all N optimal power 

dispatching profiles obtained in the first stage were 

simulated to observe what would happen in real time, by 

using the Monte Carlo procedure described in Section 

3.3. For the sake of simplicity, Fig. 4g, Fig. 4h and Fig. 

4i depict the results of only K second-stage scenarios: 

among the dispatching scenarios corresponding to the 

same unit commitment sequence, only the expected 

costs of the cheapest one is reported. 

 

Table 1. Cost and optimal commitment sequence resulting 

from different scheduling strategies. 

In. SOC  I-ARSO M-ARSO DO SO 

20% 
Exp. costs ($/d) 80.1 81.0 84.5 81.6 

Comm. seq 1 13 - - 

40% 
Exp. costs ($/d) 77.5 80.7 79.4 77.5 

Comm. seq 1 95 95 1 

60% 
Exp. costs ($/d) 77.6 83.2 78.5 78.0 

Comm. seq 1 88 30 60 
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Initial SOC (%) 

20% 40% 60% 

 
(a) Commitment sequence of the generator 

(white: on, black: off): in red and light blue 

are denoted the unit-commitment 

sequences selected by the second stage of 

I-ARSO and M-ARSO; in yellow is 

highlighted the one of the SO procedure 

and in green the commitment sequence of 

the DO technique. 

 
(b) Commitment sequence of the generator 

(white: on, black: off): in red and light blue 

are denoted the unit-commitment 

sequences selected by the second stage of 

I-ARSO and M-ARSO; in yellow is 

highlighted the one of the SO procedure 

and in green the commitment sequence of 

the DO technique. 

 
(c) Commitment sequence of the generator 

(white: on, black: off): in red and light blue 

are denoted the unit-commitment 

sequences selected by the second stage of 

I-ARSO and M-ARSO; in yellow is 

highlighted the one of the SO procedure 

and in green the commitment sequence of 

the DO technique. 

 
(d) Occurrence of commitment sequences: 

the red and light blue bars corresponds to I-

ARSO and M-ARSO, respectively 

 
(e) Occurrence of commitment sequences: 

the red and light blue bars corresponds to I-

ARSO and M-ARSO, respectively 

 
(f) Occurrence of commitment sequences: 

the red and light blue bars corresponds to I-

ARSO and M-ARSO, respectively 

 
(g) Expected second-stage operating cost of 

different commitment sequences. 

 
(h) Expected second-stage operating cost of 

different commitment sequences. 

 
(i) Expected second-stage operating cost of 

different commitment sequences. 

Fig. 4. Analysis of the unit commitment sequences analyzed with ARSO methodologies. 

According to the results shown in Tab. 1, among all 

tested operating strategies I-ARSO is always the 

cheapest one, followed by SO; DO and M-ARSO are 

usually much more expensive. As shown in [15], I-

ARSO performs better than both DO and SO, due to the 

unit commitment of resources that is usually different 

from the other approaches. For example, with an initial 

SOC of 40%, the unit commitment selected by I-ARSO 

is the same as the one identified by SO and consequently 

their final cost results are close. In other cases, the 

profiles are quite different, thus suggesting that the low 

number of scenarios of SO, limited by computational 

requirements, do not enable SO to really capture the 

stochastic nature of the load and of the renewable 

sources. Note that SO scenarios were limited to 6 due to 

the high computational requirements that can exceed 30 

minutes each on average [15]; an I-ARSO optimization 

requires usually less than a minute to be solved. 

Results shown in Fig. 4 highlight the details of I-

ARSO and M-ARSO approaches. All commitment 

sequences are sorted at increasing second-stage costs, 

reported in Fig. 4a, Fig. 4b and Fig. 4c. This enables 

highlighting that the cheapest unit commitment, the first 

on the left, usually implies a reduced use of the 

generator. However, there are different unit 

commitments that lead to similar equivalent costs, being 

these images useful for the operator. However, the plot 

of the occurrence probability of the different 

commitment sequences, shown in Fig. 4d, Fig. 4e and 

Fig. 4f is quite flat, thus suggesting that there is no clear 

optimal sequence. As a consequence, M-ARSO 

approaches can easily lead to sub-optimal solutions, 

while I-ARSO or SO can provide cheaper dispatches. 

In Fig. 4a, Fig. 4b and Fig. 4c, as well as in Tab. 1, 

the commitment sequence achieved by each tested 

approach is highlighted. The results of I-ARSO are 

always the cheapest ones, i.e. the first on the left in the 

figures; moreover, in the case of 60% initial SOC, I-

ARSO, M-ARSO, DO and SO select completely 

different operating strategies, while the same does not 

occur in the other cases. At 40% of initial SOC, the 

commitment sequence of SO equals the one of I-ARSO 

and, similarly, the commitment sequence of DO equals 

the one of M-ARSO, hence the most recurring. At 20% 

initial SOC, instead, no first-stage ARSO solution 

corresponds to the sequences selected by SO or DO. 

6 Conclusions 

In this paper we analyzed different predictive 

operating strategies to address uncertainties in isolated 

systems. Deterministic (DO) and stochastic (SO) 

approaches were compared to two methodologies based 

on the novel Aggregating-Rule-based Stochastic 

Optimization (ARSO), which decomposes a N-scenario 

stochastic problem into a number of deterministic sub-

problems that are later aggregated with specific rules. 
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The simulation-based (I-ARSO) and mixed statistical-

weighted-average (M-ARSO) rules are considered. 

Results confirmed that I-ARSO approach is very 

promising, as it was the cheapest among all tested cases; 

SO follows behind I-ARSO, yet with many more 

computational requirements. Instead, M-ARSO 

methodologies are usually as expensive as DO, or 

slightly more. In this study, we showed that the different 

approaches can lead to different unit commitment 

sequences of the diesel generator but different 

optimality of results, thus the operating strategy has to 

be carefully chosen.  

The proposed results can be the base for further 

studies on the novel ARSO optimization methods. 
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